Cluster Based Anomaly Detection in Wireless LAN

نویسندگان

  • P.Kavitha
  • M.Usha
چکیده

Data mining methods have gained importance in addressing computer network security. Existing Rule based classification models for anomaly detection are ineffective in dealing with dynamic changes in intrusion patterns and characteristic. Unsupervised learning methods have been given a closer look for network anomaly detection. We investigate hierarchical clustering algorithm for anomaly detection in wireless LAN traffic. Since there is no standard datasets available to do research in wireless network, we simulated a wireless LAN using NS-2 and the traces are used to observe the traffic patterns. Our study demonstrates the usefulness and promise of the proposed approach which uses hierarchical cluster based framework for anomaly detection in wireless computer networks to produce low false positive alarm and high detection rate also compared with the real time wireless traffic. This system can help Wireless network management system to quickly identify the attacks, which extends the system administrators security management capabilities and improve the integrity of the information security infrastructures. Keywords— Anomaly detection, Wireless Network, Data mining, Clustering , Wireless LAN Traffic data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Securing Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining

Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...

متن کامل

Efficient Hybrid Network (Wired and Wireless) Intrusion Detection using Statistical Data Streams and Detection of Clustered Alerts

Problem statement: Wireless LAN IEEE 802.11 protocols are growing rapidly and security has always been a concern with the security of wired network. Wireless networks encountered threats from unauthorized access to network resources, installation of access points and illegal sniffing (refer as classical intrusion threats). In its current hybrid wired and wireless network attacks on the generall...

متن کامل

A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows

One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...

متن کامل

ADLU: a novel anomaly detection and location-attribution algorithm for UWB wireless sensor networks

Wireless sensor networks (WSNs) are gaining more and more interest in the research community due to their unique characteristics. Besides energy consumption considerations, security has emerged as an equally important aspect in their network design. This is because WSNs are vulnerable to various types of attacks and to node compromises, and as such, they require security mechanisms to defend ag...

متن کامل

Evaluation of an Intrusion Detection System for Routing Attacks in Wireless Self-organised Networks

Wireless Sensor Networks (WSNs) arebecoming increasingly popular, and very useful in militaryapplications and environmental monitoring. However,security is a major challenge for WSNs because they areusually setup in unprotected environments. Our goal in thisstudy is to simulate an Intrusion Detection System (IDS)that monitors the WSN and report intrusions accurately andeffectively. We have thus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014